祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国着名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
失明的数学家欧拉
欧拉的惊人成就并不是偶然的。他可以在任何不良的环境中工作,经常抱着孩子在膝上完成论文,也不顾较大的孩子在旁边喧哗。欧拉在28岁时,不幸一支眼睛失明,过了30年以后,他的另一只眼睛也失明了。在他双目失明以后,也没有停止过数学研究。他以惊人的毅力和坚韧不拔的精神继续工作着,在他双目失明至逝世的十七年间,还口述着作了几本书和400篇左右的论文。由于欧拉的着作甚多,出版欧拉全集是十分困难的事情,1909年瑞士自然科学会就开始整理出版,直到现在还没有出完,计划是72卷。
欧拉在他的886种着作中,属于他生前发表的有530本书和论文,其中不少是教科书。他的着作文笔流畅、浅显、通俗易懂,读后引人入胜十分令读者敬佩。尤其值得一提的是他编写的平面三角课本,采用的记号如sinx,cosx,……等等直到现今还在用。
欧拉1720年秋天入巴塞尔大学,由于异常勤奋和聪慧,受到约翰·伯努利的尝识,给以特别的指导。欧拉同约翰的两个儿子尼古拉·伯努力和丹尼尔·伯努利也结成了亲密的朋友。
欧拉19岁写了一篇关于船桅的论文,获得巴黎科学院的奖金,从此开始了创作生涯。以后陆续得奖多次。1725年丹尼尔兄弟赴俄国,向沙皇喀德林一世推荐欧拉,于是欧拉于1727年5月17日到了彼得堡,1733年丹尼尔回巴塞尔,欧拉接替他任彼得堡科学院数学教授,时年仅26岁。
1735年,欧拉解决一个天文学的难题(计算慧星轨道)。
这个问题几个着名数学家,几个月的努力才得以解决,欧拉却以自已发明的方法,三日而成。但过度的工作使他得了眼病,不幸右眼失明,这时才28岁。
1741-1766年,欧拉应普鲁士腓特烈大帝的邀请,在柏林担任柏林科学院物理数学所所长,1766年,在俄国沙皇喀德林二世的诚恳敦聘了重回彼得堡。不料没有多久,他左眼视力衰退,只能依稀看到前方物体,最后完全失明。这时欧拉已年近花甲。
不幸的事情接踵而来。1771 年彼得堡失火,殃及欧拉住宅, 带病而失明的64岁的欧拉被围困在大火之中。紧急关头,为他做家务的一个工人冒着生命危险,冲进火中把欧拉抢救出来,欧拉的书库及大量研究成果全部化为灰烬。
沉重的打击,仍然没有使欧拉倒下。他发誓要把损失夺回来。欧拉在完全失明之前,左眼还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生和大儿子A·欧拉(1734-1800年,也是数学家和物理学家)笔录。欧拉完全失明之后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世。
欧拉的记忆和心算能力是罕见的,他能够复述青年时代笔记的内容,高等数学一样可以用心算去完成。有一次,欧拉的两个学生,分别把一个很复杂的收敛级数的17项加起来,算到第50位数字时,结果相差一个单位。欧拉为了确定究竟谁计算得对,用心算进行了全部运算,最后把错误找了出来。欧拉在失明的十七年中,还解决了使牛顿头痛的月离(月球运行)问题和很多复杂的分析问题。
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家。从19岁起和欧拉通信、讨论等周问题的一般解法,从而引起了变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得了欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛赞拉格朗日的成就,并谦恭地压下自己在这方面较不成熟的作品暂不发表,使年轻的拉格朗日的着作得以发表和流传,赢得巨大声誉。变分法一词,1766年为欧拉所创,他对变分法推进的伟大功劳,也是不可埋没的。
1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭。那时天王星刚发现不久,欧拉写出计算天王星轨道的要领,还和他的孙子逗笑,喝茶后,突然疾病发作,烟斗从手中落下……欧拉就这样“停止了生命和计算”。
历史学家把欧拉和阿基米德、牛顿、高斯并列为有史以来贡献最大的四位数学家.他们有一个值得注意的共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理、力学等方面的实际问题。他们的工作常常是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而力图探究宇宙的奥秘,揭示其内在的规律。
欧拉留给后人丰富的科学遗产中,分析、代数、数论占4o%,几何占18%,物理和力学占28%,天文占11%,弹道学、航海科学、建筑等其他问题占3%。1748年在瑞士洛桑出版的他的《无穷小分析引论》,是划时代的代表作,也是世界上第一本完整的有系统的分析学。
青年数学家伽罗瓦
1811年10月25日,伽罗瓦生在巴黎附近的一座小市镇,父亲是本市市长,母亲是当地法官的女儿,她聪明而有教养,是伽罗瓦的启蒙老师。除教授各种基本知识以外,作为古代文化的热烈爱好者,她还把古希腊的英雄主义,浪漫主义灌输到儿子的幼小心灵中,伽罗瓦从小就有强烈的好奇心和求知欲。十二岁那年,他考入当地着名的皇家中学,在老师的眼里,尽管伽罗瓦具有“杰出的才干”,但这位体格柔弱的少年却被认为“为人乖僻、古怪,过分多嘴”。他不满意内容贫乏,编排琐碎的教科书,对老师只注重形式和技巧的的讲课形式也深感失望。他不见重于师长,甚至被说成是笨蛋。他在后来的一封信中曾大为感慨地写道:“不幸的年轻人要到什么时候才能不整天听讲或死记听到的东西呢?”十五岁的伽罗瓦毅然抛开教科书,直接向数学大师的专着求教,着名数学家勒让德尔的经典着作《几何原理》,使他领悟到清晰有力的数学思维内在的美。学习拉格朗日的《论数值方程解法》和《解析函数论》,使他的思维日趋严谨。接着,他又一口气读完了欧拉与高斯的着作,这些数学大师的着作使他感到充实,感到自信:“我能够做到的,决不会比大师们少!”。
1828年,伽罗瓦17岁,这是他关键的一年,他遇到了数学教师里沙(1795-1849)。里沙不是一个普通的教书匠,他利用业余时间到巴黎大学听课,使自己的水平跟上时代的步伐,并把新的知识传授给学生们。里沙有很高的才能,好心的朋友们劝他从事着作,他却把全部精力倾注在学生身上,十九世纪法国有好几个杰出的数学家,就出自他的门下,这就是对他的最高奖赏。
伽罗瓦在里沙的帮助和鼓励下,在继承前人科学研究成果的基础上,他创立了“群”的思想。写出了第一篇数学论文,寄到法兰西科学院,负责审查这篇论文的是当时法国数学家泰斗柯西和波松。柯西是当时法国首屈一指的数学家。他一向是很干脆和公正的,但偶然的疏忽却带来了损失。第一件事是对阿贝尔没有给予足够的重视。第二件事是伽罗瓦向科学院送交论文时,未能及时作出评价,以致连手稿也给遗失了。第二年十八岁的伽罗瓦又取得了一些重要成果,再次写成论文寄交科学院。主持审查论文的是当时数学界权威人土、科学院院土--傅立叶。然而很不凑巧,傅立叶在举行例会的前几天病世了。人们在傅立叶的遗物中找不到伽罗瓦的数学论文。就这样,伽罗瓦的论文第二次被丢失了。但他并不灰心,又继续研究自己所得的新成果。第三次写成论文,即《关于用根式解方程的可解性条件》。1831年,法兰西科学院第三次审查伽罗瓦的论文,主持这次审查的是科学院院土波松。总算幸运,这一次论文没有丢失。但论文中用了“置换群”这个崭新的数学概念和方法,以致像波松那样赫赫有名的数学家一下子也未能领会,结果,最后一次得到波松草率的评语:“不可理解”而被否定了。那时科学界对形式和技巧的崇拜远远超过对创造和开拓的追求。当然也就不会承认伽罗瓦工作的价值。当时,数学新时代的曙光已出现在地平线上。像非欧几何,集合论,群论等科学思想新体系。都是在这个时代孕育的。只有勇敢地面向未来,坚定地追求未来的科学家,才能看到新时代的曙光。无怪乎伽罗瓦在谈到他同时代的数学家时曾痛切地说:“他们落后了一百年!”直到伽罗瓦死后十四年,人们研究了保存在他弟弟那里的数学论文,才认识到这些论文是当代重要的数学着作。伽罗瓦所引入的“群”的概念,已发展成为近世代数的一个新的分支--“群论”,而且在其他数学分支和近代物理、理论化学等科学上都是广泛应用的数学工具。这种理论,甚至对于20世纪的结构主义哲学的产生和发展,都发生了巨大影响。因此,伽罗瓦的工作的确是十九世纪数学的最突出的成就之一。
伽罗瓦不仅是一个天才的青年数学家,而且也是一位坚定的革命者,他生活在经历了资产阶级大革命后的法国,生长在压制革命摧残人才的波旁王朝复辟时期。他是个勇敢追求真理的科学家和战士。在法国历史上着名的1830年的“七月革命”中,刚考进法国巴黎师范大学的十九岁的伽罗瓦,积极参加了反对反动政权的斗争。他两次被捕入狱,他的身体由此受到了严重的摧残。但他在狱中仍坚持写了两部科学着作,准备获释后发表.他是一个把科学理想和社会理想结合起来,不论在数学王国还是在现实斗争中始终面向未来的不屈斗士。他说:“妨碍我成为科学家的,恰好是我不光是个科学家。”.伽罗瓦出狱不久,反动派便设下了一个圈套,在爱情纠纷的名义下,迫使他参加“决斗”,1832年5月30日清晨,一个身强力壮的反动军官,在“决斗”的借口下,给了他致命的伤害,而伽罗瓦的手枪却是没有子弹的。在“决斗”的第二天早上,他便与世长辞了。他在临死前曾对自己的一生做了这样的总结:“永别了,我已经为公共的幸福献出了自已大部分的生命!”
对伽罗瓦死于决斗,科学史学家们常常感到遗憾。普里林在考察维苏威火山时,被突然爆发的火山灰掩埋;魏格纳考察格陵兰冰川于五十岁生日时丧身,利赫曼为揭开雷电的奥秘,被引下来的电流击毙……这些死,是为了科学,为了人类的幸福。据说马克思也曾受到过决斗的挑战,但马克思对此报以轻蔑的微笑。是的,无论是科学家还是战士,他们的使命和责任,比个人的荣誉和一时的意气和冲动更为重要。
也许伽罗瓦是太年轻了,他不被社会了解和尊重,自己也不珍惜自己的价值。他内心愤怒的激情的浪涛终于冲破了理智的堤坝,把它吞没了。不论怎么说,伽罗瓦参加决斗是犯了一个不可挽回的错误,但他那刻苦钻研、独立思考、不畏权威、勇于创新的精神却永远激励着后来者。
徐光启和《几何原本》
徐光启(公元1562-1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所着各种农书,附以自己的见解,编写了着名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学家。
他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811-1882年)完成。
《几何原本》是我国最早第一部自拉丁文译来的数学着作。在翻译时绝无对照的词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
到清朝末年废科举、兴学堂之后,几何学方成为学校中必修科目之一。到这时才出现了徐光启所预料的“必人人而习之”的情况。